
Specifies the information required to fit a Beta, zero-inflated and hurdle Poisson,
zero-inflated and hurdle Negative Binomial, a hurdle normal and a hurdle Beta
mixed-effects model, using
mixed_model()
.
students.t(df = stop("'df' must be specified"), link = "identity")
beta.fam()
zi.poisson()
zi.binomial()
zi.negative.binomial()
hurdle.poisson()
hurdle.negative.binomial()
hurdle.lognormal()
hurdle.beta.fam()
unit.lindley()
beta.binomial(link = "logit")
Gamma.fam()
censored.normal()
name of the link function.
the degrees of freedom of the Student's t distribution.
# simulate some data from a negative binomial model
set.seed(102)
dd <- expand.grid(f1 = factor(1:3), f2 = LETTERS[1:2], g = 1:30, rep = 1:15,
KEEP.OUT.ATTRS = FALSE)
mu <- 5*(-4 + with(dd, as.integer(f1) + 4 * as.numeric(f2)))
dd$y <- rnbinom(nrow(dd), mu = mu, size = 0.5)
# Fit a zero-inflated Poisson model, with only fixed effects in the
# zero-inflated part
fm1 <- mixed_model(fixed = y ~ f1 * f2, random = ~ 1 | g, data = dd,
family = zi.poisson(), zi_fixed = ~ 1)
summary(fm1)
# \donttest{
# We extend the previous model allowing also for a random intercept in the
# zero-inflated part
fm2 <- mixed_model(fixed = y ~ f1 * f2, random = ~ 1 | g, data = dd,
family = zi.poisson(), zi_fixed = ~ 1, zi_random = ~ 1 | g)
# We do a likelihood ratio test between the two models
anova(fm1, fm2)
#############################################################################
#############################################################################
# The same as above but with a negative binomial model
gm1 <- mixed_model(fixed = y ~ f1 * f2, random = ~ 1 | g, data = dd,
family = zi.negative.binomial(), zi_fixed = ~ 1)
summary(gm1)
# We do a likelihood ratio test between the Poisson and negative binomial models
anova(fm1, gm1)
# }
Run the code above in your browser using DataLab